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Abstract

The uterine lining (endometrium) regenerates repeatedly over the life span
as part of its normal physiology. Substantial portions of the endometrium are
shed during childbirth (parturition) and, in some species, menstruation, but
the tissue is rapidly rebuilt without scarring, rendering it a powerful model
of regeneration in mammals. Nonetheless, following some assaults, includ-
ing medical procedures and infections, the endometrium fails to regenerate
and instead forms scars that may interfere with normal endometrial function
and contribute to infertility. Thus, the endometrium provides an exceptional
platform to answer a central question of regenerative medicine: Why do
some systems regenerate while others scar? Here, we review our current
understanding of diverse endometrial disruption events in humans, nonhu-
man primates, and rodents, and the associated mechanisms of regenerative
success and failure. Elucidating the determinants of these disparate repair
processes promises insights into fundamental mechanisms of mammalian
regeneration with substantial implications for reproductive health.
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1. INTRODUCTION

Throughout the human life span, the uterus displays a striking capacity for regeneration. The uter-
ine lining (endometrium) undergoes extensive remodeling before, during, and after pregnancy,
as well as programmed shedding and repair during each menstrual cycle. Consequently, the en-
dometrium may regenerate approximately 400 times over the reproductive life span to restore
tissue integrity and facilitate future pregnancy. Endometrial dysfunction contributes to infertility
and a wealth of poorly understood health conditions, including endometrial cancer, endometrio-
sis, and abnormal uterine bleeding, which respectively affect 1 in 32, 1 in 10, and >1 in 10 people
with a uterus in their lifetimes (Howlader et al. 2021, Liu et al. 2007, Zondervan et al. 2020).
Thus, unraveling the intricacies of proper endometrial regeneration holds tremendous promise
for unlocking fundamental mechanisms of mammalian regeneration and improving the lives of
hundreds of millions of individuals worldwide.

Uterine function relies on a complex architecture that must be restored after each menstru-
ation or pregnancy (Figure 14). The uterine cavity is lined with an epithelial monolayer on top
of a supportive mesenchymal compartment (stroma) and underlying smooth muscle layer (my-
ometrium). Glandular offshoots (glandular epithelium) extending from the surface epithelium
(luminal epithelium) project into the stroma and merge into a highly branched plexus running
parallel to the myometrial border (Tempest et al. 2020, Yamaguchi et al. 2021). Recent single-cell
transcriptomic approaches have revealed extensive heterogeneity among endometrial stromal and
epithelial populations, illuminating the complexity of this important tissue (Garcia-Alonso et al.
2021; Kirkwood et al. 2021, 2022; Wang et al. 2020; Winkler et al. 2022).

A critical consideration for understanding endometrial regeneration is that the uterus is
an organ defined by profound change. Over the menstrual cycle, fluctuations in estrogens
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Figure 1 (Figure appears on preceding page)

Working models of physiological disruption of the endometrium (dark magenta). The insets illustrate zoomed-in models of the
indicated damaged regions, with intact luminal epithelium (green) adjacent to exposed glandular epithelium (b/ue) and blood vessel (red)
remnants. (#) Human uterus with an intact endometrium. (/) Human uterus undergoing menstruation. (c) Mouse uterus with an intact
endometrium. (d) Mouse uterus undergoing experimentally induced tissue shedding as a model of menstruation. (¢) Human uterus
within 1 day of parturition. (f) Mouse uterus within 1 day of parturition. If or how postpartum gland bases connect to the lumen
remains unclear. Note that the three-dimensional gland structures in the human and mouse postpartum uterus remain unknown.
Mouse, but not human, uteri are approximately to scale across conditions.
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(predominantly estradiol), progesterone, and androgens, as well as other hormones, alter cellu-
lar proliferation, cell type distributions, and tissue architecture (reviewed in Brenner & Slayden
2012, Gibson et al. 2020). Estrogen drives the expansion of the stroma and epithelium, resulting in
thickening of the endometrium during the proliferative phase. Ovulation induces the transition to
a progesterone-dominant stage (the secretory phase), during which endometrial glands become
more tortuous and secrete products into their lumens (Gray et al. 2001, Tempest et al. 2020).
If pregnancy is not established, the demise of the progesterone-producing corpus luteum leads
to hormone withdrawal, resulting in focal shedding of the superficial layer of the endometrium
(the functionalis) and exposure of the underlying layer (the basalis). If, instead, pregnancy oc-
curs, the endometrium undergoes further remodeling to facilitate implantation and support fetal
development. At the end of pregnancy, delivery, placental shearing, and subsequent necrosis re-
move large portions of the pregnant endometrium, which is termed the decidua (Isley 2021).
Thus, endometrial function requires a capacity to regenerate from routine and variable tissue
disruption.

Consequently, defining the mechanisms of regenerative success and failure in the endometrium
requires interrogating and synthesizing data across the disparate events that compromise endome-
trial integrity. In this review, we summarize current knowledge about the cellular responses to
physiological processes that disrupt the endometrium: menstruation and parturition. We highlight
the evidence supporting numerous proposed mechanisms of endometrial regeneration, which may
be differentially evoked in response to distinct damage. We provide an overview of a subset of in-
juries, particularly relating to medical procedures and infections, that are seemingly capable of
overwhelming this regenerative repertoire, resulting in fibrosis. The examination of these fibrotic
states provides an exciting opportunity to interrogate the determinants of regeneration, with sub-
stantial clinical implications. From this perspective, we discuss the possibility that several variables,
ranging from the extent of tissue loss to hormone state, may contribute to conditions in which
regenerative mechanisms are suppressed or diverted toward nonregenerative healing. A holistic
approach to investigations of endometrial repair, considering both the foundational and clinical
science of regenerative and nonregenerative healing, is critical to understanding and harnessing
the remarkable regenerative potential of this tissue.

2. ENDOMETRIAL DISRUPTION DURING MENSTRUATION
AND PARTURITION

The endometrium is rare among mammalian tissues in that it regularly experiences programmed
tissue disruption. While both menstruation and parturition breach the endometrium, they differ
substandially in the localization and extent of tissue loss, as well as the timescale of regeneration.
Interrogating the extent to which diverse compartments are compromised is essential for under-
standing the regenerative burden imposed on the endometrium by these physiological events.
In this section, we review the effects of parturition, menstruation, and menstruation-like tissue
shedding on endometrial architecture in primate and rodent models.
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2.1. Menstruation

Menstruation is a carefully orchestrated, stepwise process of controlled tissue loss, primarily driven
by declining progesterone levels at the end of the menstrual cycle (reviewed in Critchley et al.
2020, Jabbour et al. 2006). This process has been characterized extensively in the endometrium
of the rhesus macaque. Just prior to menstruation, the macaque endometrium undergoes a
25-75% regression in size, and specialized uterine arteries constrict to mitigate blood loss (Markee
1940). In the first phase of menstruation, progesterone withdrawal leads to a reversible upregula-
tion of inflammatory mediators, such as interleukins, cytokines, and chemokines (Kelly et al. 2001,
Slayden & Brenner 2006, Wang et al. 2013). In the second phase, degradation effectors, includ-
ing matrix metalloproteinases, are upregulated and begin to break down the extracellular matrix
(ECM) (Brenner et al. 1996, Marbaix et al. 1996, Rodgers et al. 1994).

Hysteroscopic observations and examinations of endometrial specimens from menstruating
human uteri suggest that menstrual shedding occurs in a piecemeal manner (Figure 15). Patches
of intact, sloughing, and regenerating endometrium can all be found concurrently during men-
struation, limiting the amount of exposed stroma at any given time (Ferenczy 1976; Garry et al.
2009, 2010; Nogales-Ortiz et al. 1978; Novak & Te Linde 1924). The newly exposed basalis har-
bors remnants of the glandular epithelial network and arteries (Ferenczy 1976; Ludwig & Spornitz
1991; Markee 1940; Nogales-Ortiz etal. 1978; Novak & Te Linde 1924; Tempest et al. 2020, 2022;
Yamaguchi et al. 2021). Recently denuded stretches of stroma are quickly covered with fibrin, cell
debris, and blood cells (Ferenczy 1976, Garry et al. 2009, Ludwig & Metzger 1976, Ludwig &
Spornitz 1991), and new surface epithelium is identifiable as early as menstrual cycle day one, with
re-epithelialization complete by day five or six (Ferenczy 1976). While the residual glands are com-
monly attributed as the primary sources of new epithelium (see Section 3), they are not the only
reservoirs of unshed epithelium during menstruation. Mature luminal epithelium is retained near
the uppermost uterine wall (fundus), utero-cervical junction (isthmus), and utero-tubal junctions
(cornua) of the uterine cavity and may re-epithelialize nearby regions (Ferenczy 1976) (Figure 14).

Outside of primates, very few species have been found to menstruate. Among these are sev-
eral species of bat, a species of elephant shrew (Elephantulus myurus), and a species of spiny mouse
(Acomys cabirinus), which is the only rodent known to menstruate (Bellofiore et al. 2016, Rasweiler
& Debonilla 1992, Van Der Horst 1954). Among many of these species, common features of men-
struation include immune cell influx, artery remodeling, and focal tissue shedding (reviewed in
Catalini & Fedder 2020). However, there are also numerous differences between species, including
the process of tissue shedding itself. For example, in elephant shrews, shedding is compartmen-
talized to one region of the uterus, as opposed to affecting the entire endometrium (Carter 2018,
Van Der Horst 1954).

2.2. Modeling Menstruation

Due to the technical limitations and ethical considerations associated with the study of naturally
menstruating species, substantial work has been done to model hormone-driven endometrial shed-
ding in lab mice (Mus musculus) (reviewed in Liu et al. 2020). Mouse and human uteri display key
anatomical differences (Figure 1a,c). Whereas the human uterus is composed of a single cavity
with glands throughout the whole endometrium, the mouse uterus consists of two tubular horns
(Figure 1¢). Glands reside along one side of each horn, which is termed the antimesometrial side,
as it is opposite a supportive ligament (mesometrium) that encloses the uterine artery. Despite
these differences, endometrial biology in the mouse shares many common features with humans.
For instance, mice undergo a similar hormonal cycle to humans, termed an estrous cycle, which is
broken into two estrogen-dominant stages (proestrus and estrus) and two progesterone-dominant

www.annualreviews.org o Regeneration and Fibrosis in the Endometrium

201



Annu. Rev. Cell Dev. Biol. 2023.39:197-221. Downloaded from www.annualreviews.org
Access provided by 2607:fb60:1011:2006:b1f3:17ad:b7f4:c80f on 10/17/23. See copyright for approved use.

202

stages (metestrus and diestrus). As in humans, the mouse endometrium undergoes substantial re-
modeling across the hormonal cycle, albeit without a menstruating stage (Wood et al. 2007). Thus,
the mouse provides a tractable model for the mechanistic dissection of endometrial biology.

Efforts to model menstruation in mice derive from observations that human menstruation
follows a spontaneous stromal differentiation process called decidualization. In mice, natural
decidualization only occurs in response to embryo implantation, but it can be artificially induced
in nonpregnant mice by combining estrogen and progesterone priming with physical or chem-
ical manipulations of the uterine lining, such as oil injection (Finn & Pope 1984). Following
hormone withdrawal, the artificially decidualized mouse endometrium recapitulates key aspects
of primate menstruation, including uterine bleeding, focal tissue shedding that preserves gland
bases near the myometrial border, and the expression of menstruation-associated molecular
markers (Figure 1d) (Brasted et al. 2003; Cousins et al. 2014; Finn & Pope 1984; Kaitu’u-Lino
et al. 2007, 2010; Rudolph et al. 2012; Xu et al. 2013). To achieve precise hormonal control,
mice may be ovariectomized and receive cyclic estrogen and progesterone injections and/or
progesterone-releasing implants before the induction of decidualization (Brasted et al. 2003).
Other models rely on the natural progesterone fluctuations associated with mating an intact
female with a vasectomized male (this induces a physiological state called pseudopregnancy),
which may be paired with progesterone signaling inhibitors or ovariectomy to control bleeding
onset (Patterson & Pru 2013, Rudolph et al. 2012).

In addition to mouse models of induced menstruation, alternative approaches are emerging to
accommodate the experimental manipulation of human endometrial tissue. In xenograft models,
human endometrial tissue fragments or dissociated cells are transplanted under the kidney capsules
of ovariectomized, immunodeficient mice, which are then treated with estrogen and progesterone
to promote graft growth (reviewed in Kuokkanen et al. 2017). Additionally, technological break-
throughs in three-dimensional tissue culture models and bioengineering techniques have led to
the development of modular cocultures integrating multiple endometrial compartments, includ-
ing epithelium, stroma, and vasculature (Abbas et al. 2020, Ahn et al. 2021, Cheung et al. 2021,
Jamaluddin et al. 2022, Young & Huh 2021). Efforts are ongoing to build increasingly sophisti-
cated in vitro models of the human endometrium, particularly with the goal of modeling human
embryo implantation (reviewed in Li et al. 2022). Such models also hold great promise for re-
capitulating other complex aspects of human uterine regeneration, including menstruation, in
vitro.

2.3. Parturition in Humans

Gestation and parturition also result in substantial remodeling of the endometrium, which is
then restored to its prepartum state through a process called uterine involution. Much of what is
known about this process comes from a study of postpartum uterine samples that were obtained
through ethically fraught sterilization procedures (Williams 1931; for commentary, see Haig
1995). These samples and others revealed that the placental detachment site exhibits a distinct
pattern of damage and timeline of repair compared to the neighboring endometrium (Anderson
& Davis 1968, Williams 1931) (Figure 1e). Although the surface epithelium is lost from both
regions, the placental detachment site sustains deeper damage that appears to preserve fewer
gland remnants than surrounding areas (Anderson & Davis 1968, Benirschke et al. 2012, Sharman
1953, Williams 1931). As in menstrual shedding, an irregular meshwork of fibrin and erythrocytes
rapidly covers denuded areas (Ludwig 1971). In contrast to postmenstrual regeneration, uterine
involution takes place over weeks rather than days. Within the first week, islands of luminal
epithelium begin to emerge at nonplacental peripheries, where remnant gland density is highest.
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By the fourth week, these nonplacental regions are completely re-epithelialized, and the under-
lying endometrial structure is restored (Anderson & Davis 1968, Williams 1931). In contrast,
macroscopic endometrial irregularities can be observed at the placental detachment site until
at least 7 weeks postpartum, and microscopic differences persist beyond this point (Anderson
& Davis 1968, Benirschke et al. 2012, Friedlinder 1870, Williams 1931). Rounds of new tissue
growth and subsequent exfoliation at the perimeter of the detachment site may contribute to
the gradual restoration of the superficial endometrial architecture, but it is unclear whether this
process fully returns the placental site to its pregravid state (Williams 1931).

2.4. Parturition in Common Rodent Models

Despite differences between rodent and human implantation and placentation (Aplin & Ruane
2017, Hemberger et al. 2020), the tissue disruption arising from parturition appears to share some
common features in both species. As in humans, mouse placental detachment sites exhibit sub-
stantial tissue loss, with the placental detachment cleavage plane forming partway through the
mesometrial decidua (Deno 1937). Placental detachment sites are gradually restored through ep-
ithelial outgrowth from peripheral regions, mirroring placental site recovery in humans (Brandon
1994, Deno 1937). However, architectural differences between rodents and humans may necessi-
tate different reparative processes in the postpartum uterus. For example, in humans, the luminal
epithelium is disrupted throughout the uterine cavity, but a comparable extent of loss is unlikely
in the mouse, as the endometrial epithelium is largely intact 1 day after parturition, with the ex-
ception of discontinuities at placental detachment sites (Strug et al. 2018) (Figure 1f). However,
relatively little is known about uterine architecture on the day of parturition in rodents, and the
degree of epithelial discontinuity remains an important avenue for future work.

Analyses of rodent models throughout pregnancy have revealed that alterations observed im-
mediately postpartum not only reflect damage incurred during parturition but also encompass
preceding remodeling that occurred during gestation. For example, the expansion of the decidua
surrounding the embryo appears to displace the gland bases into the regions between implanta-
tion sites (Yuan et al. 2018). Whether these glands persist throughout gestation or are degraded
is unclear. In addition, the luminal epithelium undergoes a variety of degradation and remodeling
processes throughout pregnancy (Arora et al. 2016, Welsh & Enders 1983, Yuan et al. 2018). For
example, a gap in the mesometrial luminal epithelium (termed the mesometrial aperture) forms
to accommodate the placental vascular supply and persists up to parturition (Welsh & Enders
1983). Thus, postpartum involution requires the resolution of a subset of gestational alterations
in addition to the acute tissue damage associated with parturition.

Although uterine involution in rodents reverses many of the remodeling events of the preg-
nant state, traces may remain. The gross morphology of postpartum uterine horns readily reveals
regularly spaced, darkly pigmented, macrophage-rich foci, termed postpartum nodules—one for
each pup in a litter (Figure 1f) (Brandon 1994, Deno 1937, Tal et al. 2021). These nodules are
not composed of fibrous scar tissue but nonetheless denote areas of altered endometrial func-
tion in many mammals, as subsequent implantation events primarily occur between postpartum
nodules, and the tissue surrounding these features exhibits a decreased capacity for decidualiza-
tion (Brandon 1990, 1994; Deno 1937). Macrophages have also been noted to occasionally form
conspicuous pigmented nodules in the human basalis after parturition, but little is known about
their functional significance in uterine involution (Anderson & Davis 1968). Thus, although the
endometrium regenerates after parturition, postpartum nodules highlight the possibility of per-
sistent irregularities. Further studies are needed to fully understand the extent and duration of
functional impairment at these sites.
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Proposed mechanisms of endometrial regeneration following physiological tissue damage. The mechanisms presented here derive from
both human and mouse studies, although the endometrial architecture depicted is from the mouse. The relative timing and extent of
the contributions of each mechanism remain to be elucidated. (#) Injured sites are rapidly covered with the fibrinous extracellular
matrix. (b)) Epithelial migration from nearby intact luminal epithelium (green) or glandular epithelium (blue) covers the denuded areas.
(¢) In the stromal compartment, fibroblasts (agenta) undergo a mesenchymal to epithelial transition to contribute to new luminal
epithelium. (d) Perivascular MSCs differentiate to restore stromal fibroblasts. (¢) Paracrine signaling factors from bone marrow—derived
cells (purple) and other sources promote regenerative outcomes. () Bone marrow—derived MSCs (circled) transdifferentiate to make
minor contributions to the endometrial epithelium. (g,#) Long-lived epithelial progenitors residing in the gland bases self-renew and
give rise to transit-amplifying cells residing higher up in the gland. (7) Transit-amplifying cells proliferate and differentiate to form
short-lived, luminal epithelial cells. () The local proliferation of luminal epithelial cells also sustains the surface epithelium.
Abbreviation: MSC, mesenchymal stem cell.

3. PROPOSED MECHANISMS OF ENDOMETRIAL REGENERATION

Menstruation and parturition extensively disrupt both the epithelial and stromal compartments
of the endometrium, necessitating substantial cellular proliferation and differentiation to enable
continued tissue function. In this section, we outline the cell types that have been proposed to re-
populate the tissue (Figure 2). Much of this work has relied on lineage tracing experiments in mice,
which frequently use a recombinase (e.g., Cre recombinase) to induce the heritable expression of
a genetically encoded reporter in a cell of interest and all its descendants. By assessing changes
in the abundance, distributions, and identities of labeled cells over time, these methods reveal the
contributions of specific cell lineages to tissues undergoing routine turnover and/or regeneration
(reviewed in Hsu 2015). As lineage tracing is difficult to implement in humans, the capacity of
isolated cells to self-renew and/or differentiate into multiple lineages in vitro has been used as
a proxy for stemness. In addition, naturally occurring mutations have been used to deduce com-
mon cellular ancestry (clonality) between endometrial components, revealing, for example, that
endometrial glands in humans, as in mice, are primarily monoclonal (Fu et al. 2020; Lipschutz et
al. 1999; Moore et al. 2020; Tanaka et al. 2003; Tempest et al. 2020, 2022). Together, these ap-
proaches have revealed a diverse array of potential cellular sources that may contribute to tissue
turnover and/or repopulate endometrial compartments following menstruation and parturition.

3.1. Epithelial Progenitor Cells

Lineage tracing studies in mice have provided extensive evidence that epithelial progenitors play
critical roles in repopulating the epithelium under various conditions (Fu et al. 2020, Jin 2019,
Seishima etal. 2019, Syed et al. 2020). For instance, two studies performed with the pan-epithelial
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marker Pzx8 showed that the proportion of labeled cells remained constant over the entire
reproductive life span of the cycling mouse, as well as after recurrent pregnancies or following
mechanical denudation, suggesting that the labeled epithelium is largely self-renewing in diverse
contexts (Fu et al. 2020, Syed et al. 2020). This aligns with longstanding speculation in humans,
where the conspicuous gland remnants dotting the denuded endometrium after menstruation
and parturition have been proposed to supply new surface and glandular epithelium. Updated
models reflecting the three-dimensional structure of human endometrial glands illustrate how
the interconnected architecture of the gland plexus, which remains after tissue loss, could enable
efficient re-epithelialization by multiple epithelial progenitor pools (Tempest et al. 2022). Both
the proliferation and migration of preexisting epithelial cells have been proposed as possible
mechanisms for re-epithelialization (Cousins et al. 2014, Ferenczy 1976, Ludwig & Metzger 1976,
Ludwig & Spornitz 1991, Markee 1940, Nogales-Ortiz et al. 1978, Novak & Te Linde 1924).
Consistent with the existence of endometrial epithelial progenitors, a subset of isolated human
endometrial cells expressing the epithelial marker EPCAM exhibit high clonogenic, self-renewal,
and proliferative capacities in vitro (Chan et al. 2004, Gargett et al. 2009, Schwab et al. 2005).
Several molecular markers have been proposed to demarcate progenitor populations in humans,
although a clear consensus has not been reached (Gil-Sanchis et al. 2013, Nguyen et al. 2017,
Spooner et al. 2021, Tempest et al. 2018, Valentijn et al. 2013). The molecular markers, localiza-
tion, and lineage potential of endometrial epithelial progenitors in mice have also been subjects of
debate. Importantly, the contributions of different epithelial progenitor populations may change
throughout the life span. For instance, while Lgr5 marks endometrial epithelial progenitors in
neonatal mice, LgrS-positive cells provide minimal contributions to the endometrial epithelium
in adulthood (Seishima et al. 2019). Instead, emerging evidence in adult mice points to a model
in which long-lived, potentially damage-responsive progenitors (marked with Axin2) reside at the
gland bases and give rise to quickly dividing, transient populations that contribute to short-term
epithelial maintenance, akin to the transit-amplifying cells in the intestine and skin (Kaitu’u-Lino
etal. 2010, Syed et al. 2020) (Figure 2), although other models have been proposed (Jin 2019).

3.2. Lineage Plasticity in Resident Mesenchymal Populations

A growing body of literature suggests that the endometrium contains highly plastic mesenchy-
mal populations capable of producing multiple cell types. Human endometrial SUSD2-positive
perivascular cells exhibit characteristics of mesenchymal stem cells (MSCs), particularly the abil-
ity to give rise to adipocytes, myocytes, osteocytes, and chondrocytes in vitro; these cells can also
contribute to connective tissue in a xenograft model (Dimitrov et al. 2008, Gargett et al. 2009,
Masuda et al. 2012, Schwab & Gargett 2007). Additionally, side population cells, which include
mesenchymal and epithelial cells identified by their ability to efflux Hoechst dye, can produce both
hormone-responsive stroma and epithelium in vitro and when transplanted subrenally (Cervell6
et al. 2010, 2011; Golebiewska et al. 2011; Kato et al. 2007; Tsuji et al. 2008). While it remains
to be seen whether these cell types make significant contributions to the adult endometrium as
a normal part of uterine physiology, their multilineage potential in these experimental contexts
underscores the many cellular sources the human endometrium may have at its disposal during
tissue repair.

Lineage tracing studies in the mouse have further implicated mesenchymal cells in regenerat-
ing the epithelium through a mesenchymal to epithelial transition (MET). However, debate about
the contribution of this mechanism is ongoing. Many studies have taken advantage of Ambr2 gene
expression in endometrial stromal cells, and therefore used mouse models in which Cre recombi-
nase is expressed from the Amhr2 locus for lineage tracing. In contrast to the Pax8 lineage tracing
described above, which suggests self-renewal of the epithelium (Fu et al. 2020, Syed et al. 2020),
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lineage tracing using Ambr2-Cre showed that labeled cells give rise to variable proportions of
epithelial cells at various stages of the estrous cycle (Spooner-Harris et al. 2022) and following
parturition (Huang et al. 2012, Patterson et al. 2013). However, recent work using two different
mouse models revealed that widespread expression of Az2hr2-Cre during early embryonic develop-
ment may account for the labeled endometrial epithelium in the adult, rather than bona fide MET
(Dickson et al. 2023). Similarly, the coexpression of epithelial and mesenchymal markers in the
mouse embryonic endometrial epithelium may be a confounding factor in lineage tracing studies
using mesenchymal Cre promoters that are active in the embryo (Ghosh et al. 2020). Nonetheless,
evidence from an alternative approach using a different stromal cell promoter (Pdgfro-CreERT?2)
and an inducible Cre, where recombination is restricted to adulthood, has provided further sup-
port for MET (Kirkwood et al. 2022). Using this approach in a mouse model of menstruation, the
authors detected fibroblast-derived luminal epithelial cells after bleeding onset, bolstering ear-
lier studies reporting MET in this model (Cousins et al. 2014, Patterson et al. 2013, Yin et al.
2019). In human menstruation, evidence for or against MET is technically challenging to acquire
and therefore limited. A small number of studies have claimed that the lack of proliferation in
the glandular epithelium during early menstruation, and the presence of growing epithelial is-
lands free from remnant gland stumps, supports a role for MET in human epithelial regeneration
(Baggish et al. 1967; Garry et al. 2009, 2010). Altogether, the conditions under which MET
occurs in the endometrium are still under investigation, and how epithelialization through
MET intersects with tissue restoration from preexisting epithelial populations remains to be
determined.

3.3. Bone Marrow-Derived Mesenchymal Cells as Additional Contributors
to Endometrial Regeneration

Finally, it has been proposed that bone marrow—derived stem cells (BMDSCs), particularly MSCs,
differentiate into endometrial tissue in humans and mice (Du & Taylor 2007, Du etal. 2012, Taylor
2004). However, bone marrow transplant studies have found that rates of bone marrow—derived
cell engraftment are often low or negligible in the endometrium (Bratinesik et al. 2007, Du &
Taylor 2007, Du et al. 2012, Morelli et al. 2013, Ong et al. 2018, Tal et al. 2016, Wolff et al. 2013),
and these cells do not appear to expand within the human endometrium once established (Cervell6
etal. 2012, Ikoma et al. 2009). These observations suggest that these cells are unlikely to consti-
tute major endometrial progenitors under most circumstances. However, human and mouse bone
marrow MSCs can be cultured to take on decidual phenotypes, which raises the possibility that
bone marrow MSCs may play a transient role in pregnancy and/or involution (Aghajanova et al.
2010, Tal et al. 2019). Unfractionated bone marrow can also differentiate into short-lived murine
endometrial epithelium during pregnancy before becoming senescent and dying in the days fol-
lowing parturition, although the functional significance of such a contribution remains unknown
(Tal et al. 2021). Emerging evidence suggests that BMIDSCs may not directly restore lost cellu-
lar populations long-term but rather may provide paracrine factors that stimulate regenerative
remodeling (Alawadhi et al. 2014, Cervell6 et al. 2015).

4. NONREGENERATIVE HEALING OF THE UTERUS

Despite the tremendous regeneration that occurs after most physiological disruptions of the
endometrium, more than a century of clinical gynecological observations reveal numerous in-
stances in which the endometrium fails to regenerate and instead develops fibrosis (Fritsch 1894,
Johnson 1900) (Figure 3). In some cases, fibrotic lesions may span the uterine walls, forming
intrauterine adhesions (IUAs), or synechiae, capable of partially or completely obstructing the
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Wound healing outcomes in the endometrium. Both physiological and nonphysiological endometrial
disruptions induce an acute inflammatory/wound response, which can be resolved via complementary
regenerative processes (outlined in Figure 2) to restore tissue architecture prior to subsequent injury. If
coincident with underlying predisposing conditions, which may involve a number of known and unknown
determining factors, this inflammation may, instead, progress to fibrosis. Without intervention, fibroses can
be terminal or, at some frequency, undergo spontaneous reversion through poorly understood processes to
restore functional endometrial tissues.

uterine cavity (Deans & Abbott 2010). IUAs exhibit a wide range of histological and clinical
manifestations (Foix et al. 1966, Sugimoto 1978). While some IUAs may go undiagnosed due to a
lack of symptoms, those resulting in uterine cavity obstruction or loss of functional endometrium
may contribute to pelvic pain, menstrual disruption, and fertility complications (Schenker &
Margalioth 1982). IUAs manifesting in a substantial reduction or cessation of menstrual bleeding
(hypomenorrhea and amenorrhea, respectively) and infertility are characteristic of Asherman
syndrome (AS) (Asherman 1948, Stamer 1946). The true incidence of IUAs remains unknown,
but IUAs likely represent a significant health burden as prevalence strongly correlates with
gynecological dysfunction (March 2011b).

Injuries inflicted during medical interventions (iatrogenic injuries) are the most cited cause
of IUA formation. The vast majority of cases are attributed to curettage of the endometrium for
abortion or the removal of remnants of conception. However, infections and other procedures,
including diagnostic curettage, myomectomy, cesarean section, and uterine artery embolization,
also contribute (Asherman 1948, Hanstede et al. 2015, Schenker & Margalioth 1982). More-
over, interventions intended to induce fibrosis of the uterus (endometrial ablation) have been
exploited since the late nineteenth century for the treatment of heavy menstrual bleeding (re-
viewed in Wortman 2017). Despite this storied clinical history, the basic mechanisms underlying
nonregenerative healing in the uterus remain poorly understood.

4.1. Causal Factors of Uterine Fibrosis

Clinicians have long posited that physical trauma is the leading cause of IUAs, with the depth of
injury playing an important role (Asherman 1948, Stamer 1946). In humans, this model has most
compellingly been explored in the context of endometrial ablation, where the efficacy of ablation
and extent of fibrosis can be examined following treatment. Early case studies of cauterization in
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the uterus indicated that extensive injury correlated with more dramatic compositional changes
to the endometrium; following the most potent treatments, a complete loss of mucosa and uterine
patency can be observed (Johnson 1900).

In the context of incidental fibroses, the majority of studies implicating physical trauma and
injury depth in IUA formation are correlative. Human endometrium obtained from patients fol-
lowing curettage after abortion or within the immediate postpartum (puerperal) period often
reveals myometrial components, with a higher incidence of IUAs and/or amenorrhea correlating
with samples containing what the authors describe as “plentiful” myometrium, suggesting that
deep tissue removal may contribute to fibrosis in iatrogenic contexts (Eriksen & Kaestel 1960,
Hald 1949, Jensen & Stromme 1972). Additionally, evidence suggests that interventions in which
the uterine cavity is opened, for example, during some types of fibroid removal, may increase the
potential for IUA formation (Capmas et al. 2018). However, significant endometrial regenera-
tion has also been reported following many instances of physical trauma. For example, signs of
endometrial regeneration are evident within days of curettage of the nonpregnant human uterus
(McLennan 1969). Similarly, nonhuman primates subjected to consecutive endometrial resections
recovered a healthy endometrium capable of implantation and, in some cases, carrying viable off-
spring to term (Hartman 1944). A comparable resilience to traumatic injury has been observed
in a variety of nonprimate laboratory models (Schenker et al. 1971, 1973a,b). Importantly, cor-
relational studies of uterine fibrosis in humans rarely involve examination of the uterine cavity
prior to medical interventions or other suspected inciting incidents. As a result, these studies
preclude the identification of preexisting IUAs or other uterine abnormalities. Studies in which
endometrial health metrics are obtained prior to curettage, for example, in cases where the en-
dometrium has been previously assessed as part of infertility treatment, could provide crucial
opportunities to determine whether iatrogenic injury per se plays a causal role in IUA formation
(Gilman et al. 2016).

In addition to iatrogenic trauma, some infections are now appreciated as important contrib-
utors to uterine fibrosis (Netter et al. 1955, Sharma et al. 2008). Among these, female genital
tuberculosis (FGTB) is highly correlated with IUAs and AS, particularly in regions with a high
incidence of tuberculosis infection, as most cases of FGTB arise as a secondary manifestation of
pulmonary tuberculosis (Schaefer 1976). FGTB is often discovered incidentally during investi-
gation for infertility and/or amenorrhea, with lesions frequently accompanied by inflammation,
extensive fibrotic tissue, and the loss of endometrium in advanced stages, despite no history of ia-
trogenic injury (Bazaz-Malik et al. 1983, Schaefer 1976). Patterns of tissue destruction mirror the
spread of tuberculosis infection, which often originates in the fallopian tubes and spreads to the
uterus, suggesting a causal relationship between pathogenic damage and fibrosis (Schaefer 1976).
Pelvic schistosomiasis has also been implicated in several cases of AS (Acosta Go & Ibrahim 2022,
Krolikowski et al. 1995), suggesting that the role for infectious agents in uterine fibroses extends
beyond FGTB.

4.2. Factors That Predispose the Uterus to Fibrosis

A survey of clinical studies on TUAs and AS suggests that uterine fibrosis most often arises
when an inciting injury occurs alongside additional risk factors. Pregnant and postpartum uteri
appear to be particularly susceptible to TUA formation following trauma (Hanstede et al. 2015,
Schenker & Margalioth 1982, Xiao et al. 2014). In one of the largest clinical studies of ITUA
incidence, researchers attributed 90.8% of 1,856 cases to trauma incurred during pregnancy or
the puerperium. In contrast, only 3.7% of cases were attributed to comparable interventions
independent of pregnancy (Schenker & Margalioth 1982). Parturition coincides with dramatic
changes in the hormonal milieu, including sudden decreases in estrogens and progesterone,
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which may contribute to the fibrotic outcome (Barkley et al. 1979, Lewis et al. 1987). Based
on these observations, hormone supplementation has become a common peri-operative treat-
ment for the prevention of IUA reformation after resection, with estradiol administration, in
particular, intended to promote regeneration. However, the efficacy of this treatment remains
debated (Farhi et al. 1993, Johary et al. 2014), and the precise contributions of hormones to
endometrial regeneration are still being elucidated. Studies in which rhesus macaques and mice
were depleted of sex hormones reported complete endometrial regeneration after menstruation
and induced endometrial shedding, respectively (Hartman 1944, Kaitu’u-Lino et al. 2010), sug-
gesting that sex hormones may be dispensable for regeneration in some contexts. Progesterone
may hinder regeneration in some cases, as human samples subjected to curettage during the
progesterone-dominant secretory phase exhibit delayed endometrial regeneration (Johannisson
et al. 1981, McLennan 1969). Similarly, in the mouse, defective healing is associated with injury
to the diestrus uterus (Zhang et al. 2022). Further study of the role of hormones in endometrial
regeneration after diverse injuries will provide valuable information to inform clinical practice.

Recurrent or chronic injury may also predispose uterine healing toward fibrosis. This is
supported by the relatively high prevalence of IUAs reported in patients undergoing repeated
curettages for incomplete or missed abortion (Westendorp et al. 1998). Several retrospective
studies also show a higher prevalence and severity of IUAs in patients with a history of repeat
miscarriage/abortion and curettage (Friedler et al. 1993, Rémer 1994). While these reports are
consistent with the interpretation that repetitive iatrogenic injury may compound the risk for fi-
brosis, determining cause and consequence is challenging. For instance, recurrent pregnancy loss
or the necessity for repeat curettage may reflect undiagnosed fibrosis or other uterine factors (i.e.,
thin endometrium, placental retention) that may themselves predispose the uterus to fibrosis. In
line with this possibility, elevated IUAs have been reported in patients with a history of pregnancy
loss, irrespective of iatrogenic factors (Ventolini et al. 2004).

Infection has also been posited as a predisposing factor for uterine fibrosis. Acute inflammation
is frequently considered a risk factor for IUA, based on reports that the risk of IUA is relatively
high in patients undergoing curettage following missed abortion (Adoni et al. 1982, Schenker &
Margalioth 1982, Toaff & Ballas 1978). This observation, though not reported in all cases (Rémer
1994), has been attributed to the fact that delayed intervention in cases of missed abortion may
permit persisting remnants of conception to become necrotic and promote inflammation (Adoni
et al. 1982, Schenker & Margalioth 1982, Toaft & Ballas 1978). Previous work has also reported
histological signs of acute and subacute inflammation in the majority of puerperal curettings taken
in the postpartum window associated with fibrosis risk (Smid & Bed6 1978). In addition to acute
infection (for example, septic abortion), chronic endometritis has also been proposed to play a role
in IUA formation (Rabau & David 1963). However, the proposed relationship between chronic
endometritis and IUAs has been met with opposition due to inconsistent diagnostic criteria and
mixed reports of the prevalence of endometritis in patients presenting with IUAs or AS (Jensen
& Stromme 1972, Liu et al. 2019). Nonetheless, inflammation appears to compound the effects
of injury to promote uterine fibrosis in some contexts.

4.3. Persistent Regenerative Potential in the Fibrotic Uterus

The endometrial response to iatrogenic injury mirrors that observed following menstruation, in-
cluding moderate immune infiltration, the deposition of a provisional ECM, and the subsequent
emergence of an epithelium from persisting progenitors (Johannisson et al. 1981, Wyss et al.
1996). In general, fibrosis is widely regarded as a consequence of the dysregulation of normal
healing processes, as many of the effectors and pathways involved in inflammation and scarring
play fundamental roles in regenerative wound healing (reviewed in Henderson et al. 2020, Nathan
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& Ding 2010). In the endometrium, the diversion of healing towards a fibrotic outcome is often
attributed to the obliteration of the stem cell reservoir during injury. However, this model is com-
plicated by the possibility that diverse cell populations may contribute to re-epithelialization of
the endometrium (see Section 3) and that epithelial compartments may persist even after exten-
sive, catastrophic injury. Specifically, menstruation may be reduced but not eliminated following
endometrial ablation in a subset of patients, consistent with the persistence of functional en-
dometrium after the procedure. Further, endometrial glands may be observed in up to 80% of
patients after ablations considered to be clinically successful (Onoglu et al. 2007, Taskin et al.
2002).

The notion that regenerative potential can be maintained in the fibrotic uterus is further
underlined by late-onset endometrial ablation failure (LOEAF), a common outcome of ablation
characterized by the continuation or restoration of menstruation >1 month after treatment
(Wortman 2017). LOEAF is attributed to the persistence and/or regeneration of hormone-
responsive endometrial tissues, which may arise from incomplete ablation in uterine regions with
limited instrument access (Lisa et al. 1954, Turnbull et al. 1997) or from the persistence of basal
glands. Intriguingly, the probability of LOEAF increases over time after treatment (Longinotti
et al. 2008, Shavell et al. 2012), suggesting that the fibrotic uterus can retain the ability to
regenerate and, remarkably, reverse the fibrotic course. In light of the data on uterine fibrosis
and its reversion, it is tempting to speculate that the regeneration of the endometrium depends
less on a singular mediator than on a tenuous balance between pathways underlying both regen-
erative and nonregenerative processes (Figure 3). In this regard, dissecting uterine regeneration
requires understanding how changes associated with injury and fibrosis predisposition—injury
timing, depth, and chronicity, among others—compromise or divert existing regenerative
mechanisms.

4.4. Mechanisms of Uterine Fibrosis

The anatomy of the uterus ensures that deep tissue damage disproportionately impacts stro-
mal and myometrial compartments, which contribute to the formation and maintenance of the
niche in which progenitors reside. Clinical studies have revealed substantial alterations of uterine
compartments in patients presenting with IUAs and AS, including increases in fibrotic tissue in
the muscle (Yaffe et al. 1978) and stroma (Bergman 1961), reduced myometrial blood flow, and
widespread vascular occlusion (Polishuk et al. 1977). Such changes may impact tissue mechan-
ics and perfusion—factors that are known to contribute to diverse fibrotic disorders (Darby &
Hewitson 2016, Van De Water et al. 2013). Furthermore, necrotizing granulomas and other im-
mune cell infiltrates are frequently observed in postablation specimens (Ashworth et al. 1991,
Silvernagel et al. 1997, Tresserra et al. 1999), and could conceivably contribute to a profibrotic
tissue environment. Together, these observations highlight potential avenues by which the exten-
sive injury and remodeling of the endometrium and adjacent compartments may impact cellular
interactions to disrupt the balance of regenerative and nonregenerative healing processes.
Disentangling the complex interactions between endometrial progenitors and their niche
factors requires experimental models of uterine fibroses. Attempts to develop such animal models
using a variety of approaches associated with TUA formation in humans have had varying success,
with few studies reporting the presence of bona fide IUAs or obstruction of the uterine cavity
(Liang et al. 2022; Schenker & Polishuk 1972, 1973; Schenker et al. 1971, 1973a,b). Comparisons
of existing experimental models are complicated in many cases by the use of different diagnostic
criteria, ranging from functional measures (such as fecundity) to histological and molecular
readouts. Challenges in developing uterine fibrosis models may further arise from interspecies
variation related to fundamental differences in reproductive biology and/or the necessity to
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incorporate additional predisposing factors. Particularly compelling rabbit models of IUAs and
AS have arisen from dual injury approaches in which mechanical trauma is compounded with
inflammatory [e.g., bacterial lipopolysaccharide (Liu et al. 2013)] or profibrotic stimuli [e.g.,
fibroblast- and collagen-enriched sponges (Schenker et al. 1975)], underscoring the potential role
of predisposing physiological states in promoting uterine scarring.

Experiments in animal models have explored a wealth of molecular factors that contribute to
uterine fibrosis (reviewed in Leung et al. 2020), many of which converge on signaling pathways
underlying global injury responses, immune activation, fibroblast mobilization, and tissue remod-
eling. Unsurprisingly, among these are a number of effectors that have been implicated in fibrosis
in other organs. For instance, rabbit and rat models of induced IUAs exhibit elevated activation
of TGF-B and NF-kB pathways, which are also reported in human IUAs (Ning et al. 2018, Salma
etal. 2016, Wang et al. 2017, Xue et al. 2015). NF-«kB represents a family of transcription factors
regulating critical pathways in immune signaling and inflammation (reviewed in Liu et al. 2017).
TGF-B is well established as a driver of fibrosis in many organs, where its transcriptional activities
contribute to an array of processes, including ECM accumulation and fibroblast recruitment, ac-
tivation, and differentiation into myofibroblasts (reviewed in Budi et al. 2021, Rockey et al. 2015).
Consistent with this, experimental hyperactivation of the TGF-B pathway in the mouse uterus
promoted myofibroblast differentiation (Gao et al. 2015). The development and refinement of
additional experimental models of uterine fibroses will play a critical role in facilitating further
gain- and loss-of-function studies of these pathways.

Modern single-cell transcriptomic approaches offer additional opportunities to construct an
unbiased portrait of nonregenerative healing in the uterus. For example, recent work compared
single-cell expression profiles from a human endometrium atlas to those from patients with mod-
erate and severe AS (Santamaria et al. 2022, Wang et al. 2020). This study reported profound
changes in the composition and function of AS uteri, including unique epithelial and smooth
muscle cell populations, a proinflammatory immune cell state, fibrotic stroma, and compro-
mised vascularity. Moreover, the authors’ analyses of ligand-receptor pair expression suggested
alterations to cell-cell communication in AS uteri, including a decrease in epithelial-stromal
communication and an increase in autocrine stromal signaling and endothelial-immune communi-
cation. Such approaches hold great promise for both basic mechanistic and therapeutic discoveries
in uterine biology.

4.5. Therapeutic Management of Uterine Fibrosis

Treatment of IUAs and AS primarily focuses on adhesiolysis, the resection of scar tissue under
hysteroscopic visualization, often augmented with hormone treatment or the placement of phys-
ical barriers to prevent adhesion reformation (e.g., a Foley catheter) (March 2011a). However,
the efficacy of these interventions is variable, and adhesions have been reported to recur in up
to two-thirds of patients (reviewed in AAGL 2017). Nevertheless, the success of adhesiolysis in
enhancing menstrual flow and fertility in some cases provides an additional tantalizing indication
that latent regenerative potential may persist in a fibrotic uterus.

Experimental models of uterine injury have also been harnessed to explore a remarkable
breadth of therapeutic strategies for preventing and treating IUAs. These include a variety of
biocompatible materials that may be transplanted into the injured uterus to serve as cellular
scaffolds or enable the release of proregenerative factors (Jonkman et al. 1986, Li et al. 2011,
Taveau et al. 2004; reviewed in Yin et al. 2023). Additionally, considerable effort has gone toward
developing approaches to transplant putative stem/progenitor cells or enhance their homing to
the target tissue (Sahin Ersoy et al. 2017). Bone marrow-based therapies have gained notable
traction, with the transplantation of unfractionated bone marrow, a putative source of BMDSCs,
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improving fecundity in a mouse model of traumatic AS (Alawadhi et al. 2014). This improvement
likely occurs through the modulation of the uterine niche, as opposed to substantial cellular
repopulation, as human CD133* BMDSCs transplanted into the same AS mouse model engraft
around endometrial vessels and promote glandular epithelial proliferation (Cervell6 et al. 2015).
BMDSC-based approaches have since been translated to phase I/II clinical trials for the treatment
of AS and endometrial atrophy, and shown to partially reverse AS-associated transcriptional sig-
natures following treatment (Santamaria et al. 2016, 2022). A variety of other cell-based therapies
have been explored in similar models, including MSCs from adipose tissue, umbilical cord, or
amniotic membranes (Gan et al. 2017, Kilic et al. 2014, Tang et al. 2016); uterine- or menstrual
blood-derived cells (Hu et al. 2019, Liu et al. 2018); and human embryonic stem cell-derived
endometrium-like cells (Song et al. 2015). All report some improvements in uterine regeneration
and/or reproductive performance. The efficacy of these diverse interventions suggests that many
strategies, ranging from resupplying component parts to niche priming with paracrine signals,
may suffice to bias healing toward regenerative outcomes. Furthermore, this work offers hope
for positive health and reproductive outcomes for diverse patients, as orthogonal therapeutic
approaches may be necessary to address the poorly defined variability in uterine fibroses.

5. OUTLOOK

Efforts to synthesize information from basic science and medicine hold great promise for ad-
vancing our understanding of uterine biology. In summarizing how the endometrium responds to
menstruation, parturition, iatrogenic injury, and infection, this review underscores the plethora of
factors that may determine regenerative versus fibrotic outcomes. These factors include the spatial
heterogeneity of damage across the organ, which cell types survive the breach (both progenitors
and their niche components), the extent and duration of inflammation, and the speed of repair
processes. Each of these may be further modulated by the tissue state, including hormone levels
or prior tissue history. Our inability to robustly predict the outcomes of many uterine injuries in a
clinical setting or to understand pathological responses to physiological injuries, such as abnormal
uterine bleeding, reveals that many important variables remain to be defined.

The true breadth of change to which the endometrium is exposed extends far beyond the con-
ditions we have reviewed here. Endocrinological disorders, other disease states, and contraceptives
provide additional variables that may modify endometrial architecture and regenerative capacity
within the reproductive years. In addition, the reproductive life span, bounded by menarche and
menopause, reflects only half of the total life span (Appiah et al. 2021, Martinez 2020, Stewart
et al. 2022). Outside of the reproductive window, endometrial remodeling and regeneration also
unfold in ways that remain exceedingly poorly understood. For example, some newborns exhibit
a sparsely studied withdrawal bleed (neonatal uterine bleeding) upon removal from the hormone-
rich in utero environment at parturition (reviewed in Benagiano et al. 2021). In addition, there
is much to discover about the endometrium during childhood, perimenopause, and menopause,
which may evoke different regenerative strategies and vulnerabilities compared to the reproduc-
tive years (Metcalf et al. 1981, Swain & Kulkarni 2021). While much remains unknown about the
balance between regenerative and nonregenerative healing in the uterus, uncovering the secret
to the remarkable resilience of this organ holds the potential to inform far-reaching fields, from
wound healing and regeneration to inflammation and beyond.
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