
The transmission of an intact genome to daughter 
cells during cell division is a fundamental requirement 
for the viability of cells and organisms. In eukaryotes, 
DNA is packaged into chromosomes, which must be 
faithfully replicated and segregated during cell division. 
To achieve accurate segregation, chromosomes rely on 
a specialized region known as the centromere. The 
centro mere recruits the kinetochore, which is a protein­
aceous macromolecular structure that forms attach­
ments to the microtubules of the mitotic and meiotic 
spindles. Together, centromeres and kinetochores are 
the central players in chromosome segregation. Defects 
in centro mere or kinetochore function can lead to the 
loss or disruption of genomic information, resulting in 
developmental defects or disease1.

The crucial function of the centromere has been 
appreciated for more than 130 years. The centromere 
was first observed by light microscopy as the chromo­
somal attachment site for spindle microtubules in 
dividing cells2 (FIG. 1a). As the centromere protects and 
maintains sister chromatid cohesion during mitosis  
and meiosis3–6, this region of the chromosome is also 
visible in many organisms as the primary constriction 
on condensed mitotic chromosomes (FIG. 1b). Geneticists 
subsequently combined these cytological observations 
with the analysis of recombinant progeny to define the 
positions of genes relative to the centromere, and thereby 
translate genetic maps onto physical ones7,8.

Although the centromere has been described exten­
sively by cytological and genetic approaches, defining 
the molecular features that confer its functions is a 
central ongoing pursuit9. When first defining the term 
centromere in 1936, Cyril Darlington commented 
that “[the centromere must] be considered in terms of 

function rather than form, since the function is evident 
and the form elusive” (REF. 10). Elucidating the ‘form’ of 
centromeres has remained challenging, because centro­
meres require numerous molecular features that vary 
across eukaryotes. Despite this complexity and varia­
tion, several common themes have emerged regardin g 
the molecular basis of centromere function. In the vast 
majority of eukaryotes, centromere specification is 
primarily epigenetic and depends on the presence of 
specialized nucleosomes containing the histone H3 
variant centromere protein A (CENP­A; also known as 
CENH3). Centromere function requires the combina­
tion of CENP­A­containing nucleosomes, features of 
the underlying DNA sequence, unique combinations 
of chromatin marks, and interactions with kinetochore 
proteins.

In this Review, we highlight recent work on the 
molecular basis of centromere function, with a focus 
on the vertebrate centromere. We describe the current 
understanding of the genetic and epigenetic features 
that define centromeres, the mechanisms of centromere 
propagation and the recognition of the centromere by 
the kinetochore. This work is revealing Darlington’s 
elusive ‘form’ underlying the crucial functions of the 
centromere in the propagation of the genome to cells 
and gametes.

Centromere DNA structure and function
In the majority of eukaryotes analysed to date, the 
centro mere is specified epigenetically (BOX 1), such that 
specific DNA sequences are neither strictly necessary 
nor sufficient for centromere function. Instead, the uni­
fying characteristic of most eukaryotic centromeres is 
the presence of CENP­A. Nonetheless, recent work has 
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Abstract | The centromere is the region of the chromosome that directs its segregation in mitosis 
and meiosis. Although the functional importance of the centromere has been appreciated for 
more than 130 years, elucidating the molecular features and properties that enable centromeres 
to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres 
are defined epigenetically and require the presence of nucleosomes containing the histone H3 
variant centromere protein A (CENP‑A; also known as CENH3). Ongoing work is providing 
important molecular insights into the central requirements for centromere identity and 
propagation, and the mechanisms by which centromeres recruit kinetochores to connect to 
spindle microtubules.
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highlighted evolutionary and functional preferences for 
specific DNA structures that strongly indicate that they 
contribute to centromere function, as we describe in this 
section.

A common structure for centromeric DNA sequences. 
Most eukaryotes have monocentric chromosomes, in 
which a centromere is assembled at a single localized 
region (FIG. 2a). Notable exceptions are some nematodes 

Figure 1 | Visualization of the centromere. a | Comparison of images of mitotic Salamander cells hand‑drawn by 
Walther Flemming in 1882 (REF. 2) (top) with immunofluorescence images of human cells (bottom) stained for 
microtubules, centromere protein A (CENP‑A) and DNA. The images show cells at different phases of a mitotic cell cycle: 
late prometaphase–metaphase (left), anaphase (middle) and telophase (right). b | Images of the centromere at increasing 
resolution. Top left: immunofluorescence image of a mitotic chromosome stained for DNA, CENP‑A and CENP‑B (a marker 
for the α‑satellite DNA repeats that are present at most human centromeres). Top right: electron micrograph of the 
centromeric region of a mitotic chromosome showing centromeric chromatin (dark cloud), kinetochore and microtubules. 
Bottom left: immunofluorescence image of a stretched centromeric chromatin fibre showing patches of CENP‑A 
interspersed with histone H3, in this case specifically H3 dimethylated on Lys 4 (H3K4me2). Image courtesy of Elaine 
Dunleavy, adapted from REF. 101. Bottom right: crystal structure of the CENP‑A nucleosome90 (RCSB Protein Data Bank 
(PDB) ID: 3AN2). Part b, top right, adapted from REF. 215. Republished with permission of the American Society of Cell 
Biology, from ‘Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to 
improper kinetochore attachments’; Kline‑Smith SL, Khodjakov A, Hergert P, Walczak CE. Mol. Biol. Cell 15:3, 2004 
permission conveyed through Copyright Clearance Center, Inc.
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(including Caenorhabditis elegans), and some insects 
and plants, which assemble a diffuse centromere along 
the entire length of the chromosome, a phenomenon 
known as holocentricity11 (FIG. 2a). Species with mono­
centric chromosomes can either have point centro­
meres, containing short DNA sequences, or regional 
centromeres (FIG. 2a), which contain kilobases to mega­
bases of DNA12. Point centromeres are found in some 
budding yeasts12, including Saccharomyces cerevisiae13, 
and are defined as those centromeres in which the 
precise centromeric DNA sequence is necessary and 
sufficient for kinetochore assembly and DNA segrega­
tion14–16. Regional centromeres are typically composed 

of repetitive DNA sequences that contribute to, but 
are not sufficient for, centromere function. However, 
some organisms contain regional centromeres that are 
non­repetitive, such as the yeast Candida albicans17, 
or have a mixture of repetitive centromeres and non­ 
repetitive centromeres, such as orang­utan18, horse19 
and chicken20. Repetitive centromeres consist of retro­
transposons and/or long arrays of simple tandem 
repeats, referred to as satellite DNA21.

The precise DNA sequences found at centromeres 
vary dramatically across evolution, and it has been 
proposed that this rapid evolution is a consequence of 
meiotic drive22. Despite the divergence in centromere 
sequences, regional centromeres possess a modular 
structure that is shared by many taxa. Regional centro­
meres typically consist of a central core, which is where 
the CENP­A nucleosomes reside and is composed of 
homogenous ordered repeats; and an outer heterochro­
matic domain, termed the pericentromere, that typically 
contains less ordered repeats (FIG. 2a,b). For example, 
centromeres of the fission yeast Schizosaccharomyces 
pombe contain a centromere core of non­repetitive 
sequences flanked by perfect inner inverted repeats and 
less ordered outer repeats23. Similarly, the Mus musculus 
centromere core is composed of minor satellite arrays 
containing homogenous 120 bp repeats flanked by 
less ordered ~234 bp major satellite repeats24. Primate 
centromeres are built on arrays of a 171 bp monomer 
termed α­satellite DNA25–28. In humans and other great 
apes, monomers are arranged head­to­tail to form 
higher­ order repeats that are themselves reiterated 
across the centromere core. The human pericentromere 
contains flanking monomers that lack higher­order 
repeats and that have reduced identity between mon­
omers (see REF. 29 for a further review of centromeric 
DNA structure) (FIG. 2b). Thus, centromeres frequently 
arrange their divergent centromere sequences in a  
common repetitive structure.

Evolutionary preference for repetitive DNA structures. 
Cytogenetic comparisons between closely related spe­
cies have revealed that some centromeres adopt new 
positions over evolutionary time subsequent to a spe­
ciation event without transposing the surrounding 
genetic markers, a phenomenon known as centromere 
repositioning30 (FIG. 2c). These structures are referred to 
as evolutionary new centromeres (ENCs) and have been 
observed in primates and other mammals (reviewed 
in REF. 31) and in birds32. A striking property of ENCs 
is that they typically contain the same molecular fea­
tures as do the ‘old’ centromeres within the karyo­
type, including the species­specific satellite DNAs. For 
example, all nine ENCs in macaque contain α­satellite 
arrays and large segmental duplications, making them 
indistinguishable from ‘old’ macaque centro meres33. 
Thus, it is postulated that ENCs are seeded upon new, 
non­repetitive DNA sequences in a manner analogous 
to neocentromeres (BOX 1) but subsequently acquire 
their species­specific satellite DNA over time. The 
recent ENCs on orang­utan chromosome 9 and horse 
chromosome 11 have not acquired satellite DNA and 

Box 1 | Evidence for the epigenetic nature of the centromere

The first evidence that the centromere is specified epigenetically came from human 
patient samples containing dicentric chromosomes in which one centromere was 
functionally inactivated without changes to its underlying DNA sequence70 (see the 
figure, top). In subsequent work, epigenetic centromere inactivation was observed in 
dicentric chromosomes in diverse contexts199–201. Centromere inactivation is also 
frequently observed in Robertsonian fusions202 and in isodicentric Y chromosomes 
generated by sister chromatid recombination of Y chromosome palindromes203. These 
data indicate that centromere sequences are not sufficient for centromere function.

Compelling evidence that centromere sequences are not necessary for centromere 
function comes from centromeres at atypical sites, termed neocentromeres (reviewed in 
REF. 69; see the figure, middle and bottom). For example, routine karyotyping of a human 
patient in 1993 revealed a chromosome fragment that had lost its centromeric DNA but 
was nonetheless stably maintained in mitosis, assembled a functional kinetochore and 
mediated sister chromatid cohesion in the absence of canonical underlying DNA 
repeats54. Subsequent work revealed cases of inherited neocentromeres, demonstrating 
that these structures are stable in both mitosis and meiosis204,205. Neocentromeres have 
also been generated experimentally in diverse organisms by selecting for their ability to 
rescue acentric chromosomal fragments126,206–209. Neocentromeres have been observed in 
otherwise normal karyotypes, in which the centromere DNA sequences remain intact 
but have lost centromere function205 (see the figure, middle), reinforcing the insufficiency 
of centromere sequences that was proposed by observation of dicentric chromosome 
inactivation. CENP, centromere protein.
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may be intermediates in this maturation process18,19. 
Chromosomes harbouring ENCs also exhibit a decay 
of the satellite sequences at the ancestral site34. The 
acquisition of a modular structure of tandem repeats 
by ENCs further supports a contribution of such DNA 
structures to centromere function.

Contributions of DNA sequences to centromere function. 
As described above, centromere function in organisms 
with point centromeres strictly depends on the centro­
meric DNA sequence. Thus, these sequences can con­
fer mitotic and meiotic stability when introduced into 
exogenous minichromosomes in organisms with point 
centromeres, such as budding yeast13. In organisms 
with regional centromeres, specific sequences are not 
necessary or sufficient for centromere function in some 
contexts (BOX 1). However, regional centromere DNA 
sequences can also confer centromere function on exo­
genous DNA in some organisms, including S. pombe35 
and primates36, indicating that they can have a role in 
the de novo specification of a centromere.

Extensive work has sought to use α­satellite DNA to 
build human centromeres de novo and generate human 
artificial chromosomes (HACs). In pioneering work, 
cloned α­satellite DNA from human chromosomes ena­
bled linear human minichromosomes37 and yeast artifi­
cial chromosomes38 to be stably inherited in human cells. 
These systems demonstrated that α­satellite DNA was 
sufficient to initiate centromere formation. The analysis 
of HAC formation also permitted structure–function 
studies of the α­satellite DNA, revealing a key role for 
the higher­order repeats39. The mechanisms by which 
α­satellite DNA sequences initiate centromere formation 
are the subject of current investigations. Recently, it was 
suggested that α­satellite arrays adopt chromatin marks 
that favour the deposition of CENP­A nucleosomes (see 
below)40,41. Together, this work is beginning to bridge 
the gap between the centromere DNA sequences and 
the epigenetic marks that are required for centromere 
function.

DNA sequence-dependent binding proteins at the cen-
tromere. For specific DNA sequences to confer cen­
tromere functions, they must be recognized by proteins 
that recruit the chromosome segregation machinery. 
This may occur through generating a permissive envi­
ronment for particular epigenetic marks or through 
interactions with sequence­specific DNA binding pro­
teins. At the point centromeres of budding yeast, the 
centromere DNA element III sequence (CDEIII) is 
recognized by the sequence­specific binding protein 
Cbf3 (REF. 42), providing a straightforward link between 
centromere sequence and function. However, poten­
tial roles for a sequence­specific DNA­binding pro­
tein are more challenging to predict in organisms with 
regional centromeres, particularly because centromere 
sequences vary dramatically across species, whereas 
centromere proteins are largely conserved. The only 
known centromere sequence element that is conserved 
between primates and rodents is the CENP­B box43,44, 
a 17 bp sequence that binds to the protein CENP­B45. 
The CENP­B box is found in the minor satellite of 
M.  musculus and some monomers within the high­
er­order repeats of human α­satellite arrays. Although 
M. musculus and great apes share the CENP­B box, some 
primates lack CENP­B boxes46, and the rodent Mus caroli 
contains a divergent CENP­B box that retains the nine 
base pairs required for CENP­B binding47.

Figure 2 | Centromere specification. a | Diverse types of centromeres are found across 
eukaryotes. Holocentric chromosomes assemble a diffuse centromere across the whole 
chromosome. Monocentric chromosomes assemble a centromere at a single localized 
site on the chromosome, which is visible as a constriction between the chromosomes in 
mitosis (known as the primary constriction). Monocentric chromosomes can be further 
classified into those with point centromeres and those with regional centromeres. Point 
centromeres contain a specific DNA sequence that is sufficient for centromere function 
(here illustrated with the Saccharomyces cerevisiae DNA architecture), which assembles a 
single centromere protein A (CENP‑A) nucleosome. Regional centromeres contain large 
regions of DNA that is often repetitive (such as α‑satellite DNA in primates) and assemble 
numerous CENP‑A nucleosomes. b | Primate centromeres are built from α‑satellite 
monomers (depicted as triangles), which are largely but not completely identical, as 
indicated by the different coloured triangles. Patterns of these monomers arranged 
head‑to‑tail are reiterated over the centromere core (red) as higher‑order repeats. Some 
monomers within the centromere core contain a sequence termed the CENP‑B box 
(green), which binds to the centromere DNA‑binding protein CENP‑B. The centromere 
core is flanked by less ordered monomers, which comprise the pericentromere (orange). 
Long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs) 
and other satellites (squares) are found interspersed with α‑satellite monomers in the 
pericentromere216. c | Schematic showing a comparison between macaque and human 
orthologous chromosomes that have undergone centromere repositioning such that the 
position of the centromere has moved but the surrounding markers have not, as 
indicated by the colour blocks, which represent syntenic regions. CDE, centromere DNA 
element; H3, histone H3. Part c adapted from Ventura, M. et al. Evolutionary formation of 
new centromeres in macaque. Science 316, 243–246 (2007). Reprinted with permission 
from AAAS.
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Owing in part to its inconsistent conservation, the 
importance of the CENP­B box and of the protein itself 
remain poorly understood. CENP­B directly inter­
acts with and stabilizes both CENP­A nucleosomes 
and the kinetochore protein CENP­C to contribute to 
centromere function48–50. However, Cenpb­knockout 
mice are viable51–53, and neocentromeres are main­
tained without acquiring CENP­B­binding capability54. 
Perhaps most intriguingly, the human Y chromosome 
centromere lacks CENP­B boxes43 and does not bind 
to detectable CENP­B protein55. Similarly, the Y chro­
mosome of M.  musculus lacks the minor satellite 
sequences that contain the CENP­B box56. However, 
Y chromosome sequences are not sufficient to generate 
HACs without acquiring other centromeric α­satellites 
from the host cells37,57, and HAC formation requires 
the CENP­B box39,58. Together, these data indicate that 
CENP­B, like the centromere sequences it binds, is not 
strictly required at the centromere but makes func­
tional contributions to maximize mitotic fidelity that 
contribute particularly to the generation of centromeres 
de novo.

Centromere epigenetics
Despite contributions from the DNA sequences and 
structures present at centromeres, centromere identity is 
defined epigenetically in most eukaryotes (BOX 1). Below, 
we describe the specialized centromeric chromatin that 
marks this region of the chromosome.

CENP-A is an epigenetic hallmark of centromeres. 
In most eukaryotes, the defining feature of centromeres 
is the presence of nucleosomes containing CENP­A. 
CENP­A was first identified as a centromere­specific 
antigen recognized by antibodies from human patients 
with the autoimmune disease CREST syndrome45. 
Concurrent and subsequent work found that CENP­A 
was a component of chromatin with biochemical simi­
larity to histones59–62, and that it shared homology with 
histone H3 (REFS 61,63). CENP­A homologues have been 
identified in diverse eukaryotes on the basis of their sim­
ilarity to H3 (REFS 64–66). As a centromere­specific H3 
variant, CENP­A is a compelling candidate for an epi­
genetic mark of centromere identity67,68. Consistent with 
a fundamental requirement for CENP­A in centromere 
function, CENP­A is found at all identified neocen­
tromeres69, as well as at the active centromeres of dicen­
tric chromosomes70, and is essential for the localization 
of all known kinetochore components48,71,72. Importantly, 
artificial targeting of CENP­A to an ectopic chromo­
somal locus is also sufficient to generate structures that 
are capable of directing microtubule attachment and 
chromosome segregation73–76.

CENP-A nucleosomes possess unique structural prop-
erties. The existence of a centromere­specific histone 
raises intriguing possibilities regarding how CENP­A 
is specialized to mark the position of the centromere 
and recruit downstream kinetochore proteins. At the 
sequence level, CENP­A contains two important 
regions: a histone­fold domain that has 62% sequence 

identity with H3 in humans; and an amino­terminal 
tail that differs more significantly from H3 (REF. 63) 
and even between CENP­As from different species77 
(FIG. 3a). Within the histone­fold domain, the first loop 
and second α­helix (L1–α2) are necessary for targeting 
CENP­A to the centromere and are sufficient to confer 
centromere targeting when introduced into chimeras 
with H3 (REFS 78,79). Therefore, this region is referred 
to as the CENP­A­targeting domain (CATD) (FIG. 3a). 
Sequences within CENP­A nucleosomes also confer cen­
tromere­specific functions through the direct binding 
of the core kinetochore proteins CENP­N and CENP­C 
(FIG. 3a). In particular, CENP­N binds directly to the 
CATD of CENP­A76,80,81. CENP­C makes extensive con­
tacts with the CENP­A nucleosome: with the six residues 
of the CENP­A carboxy­terminal tail80,82,83; with other 
histones within the CENP­A nucleosome82; and with 
the CENP­A CATD76,84. The CENP­A N­terminal tail 
has also been implicated in the recruitment of kineto­
chore proteins in various organisms48,76,85–87. Thus, var­
iations between CENP­A and H3 at the sequence level 
confer centromere specificity and kinetochore assembly  
properties on CENP­A.

CENP­A nucleosomes also have structural distinc­
tions from canonical H3­containing nucleosomes, 
with the potential to make contributions to centro­
mere function. The structural properties of the CATD 
make the free (CENP­A–H4)2 tetramer more con­
formationally rigid than the (H3–H4)2 tetramer, as 
determined by hydrogen–deuterium exchange, and 
cause the CENP­A–CENP­A interface to be rotated 
when compared to the H3–H3 interface in a canonical 
nucleosome, generating a more compact structure88,89. 
However, in the crystal structure of the octameric 
nucleosome, the CENP­A–CENP­A axis appears sim­
ilar to the H3–H3 axis from canonical nucleosomes90. 
Recent work indicates that CENP­A nucleosomes 
in solution sample both forms, and that binding of 
CENP­C shifts the nucleosome to the state similar to 
that of canonical nucleosomes91. In addition, there is 
an extensive, ongoing debate regarding whether the 
CENP­A nucleosome forms a hemisome (with one 
molecule each of CENP­A, H4, H2A and H2B) that 
wraps DNA in a right­handed manner, or an octamer 
(reviewed in REF. 92). Finally, CENP­A nucleosomes 
confer structural alterations on centromeric chromatin. 
For example, CENP­A arrays are more condensed93,94, 
but with a DNA entry and exit site that is loose com­
pared to canonical nucleosomes90,93–96, a property that 
is enhanced by CENP­C binding91. Thus, sequence and 
structural specializations of CENP­A nucleosomes and 
CENP­A­containing chromatin generate fundamental 
distinctions between centromeric chromatin and bulk 
chromatin.

Centromere propagation
Faithful centromere inheritance is crucial for the trans­
mission of the genome, as failure to propagate the centro­
mere results in the inability of a chromosome to attach to 
the mitotic spindle, leading to loss of the chromosome 
and the information that it encodes. On monocentric 
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chromosomes, the spurious formation of centromeres 
at two distinct loci allows a single chromatid to attach 
simultaneously to opposing spindle poles, resulting in 
mis­segregation or fragmentation of the chromosome by 
spindle forces. The fragmentation of dicentric chromo­
somes can result in breakage–fusion–bridge cycles that 
confer cascading chromosomal instability97,98. Therefore, 
the centromere must be faithfully inherited at a single 
site on each chromosome through all mitotic and meiotic  
divisions (BOX 2).

The CENP-A-deposition machinery. In most eukary­
otes, centromere inheritance requires the transmission of 
CENP­A nucleosomes to maintain the epigenetic mark 
on each sister chromatid. Fundamental to this transmis­
sion is the striking stability of CENP­A, which does not 
exchange once it is incorporated at centromeres91,99,100 and 
is conservatively partitioned between the newly replicated 
sister chromatids during the S phase of the cell cycle91,99,100. 
Unlike canonical histones, the deposition of new 
CENP­A is uncoupled from DNA replication, such that 

Figure 3 | Specialization and propagation of centromere protein A (CENP‑A). a | Model of human CENP‑A primary and 
secondary structure, showing conservation with histone H3. Each segment corresponds to a single amino acid and is 
coloured according to its conservation with human H3.1, as indicated. The first amino‑terminal amino acid, shown 
detached, represents the cleaved initiator Met. Barrels represent α‑helices, and rods represent loops. Within the 
histone‑fold domain, the helices are designated α1 to α3, and the loops are designated L1 and L2. L1 and α2 comprise the 
CENP‑A‑targeting domain, which is sufficient to target CENP‑A to centromeres, owing to its interaction with the CENP‑A 
chaperone HJURP. This region also binds to CENP‑N81 and is important for CENP‑C recruitment76,84. CENP‑C also binds to 
the carboxy‑terminal residues of CENP‑A80,82,83. b | Model for the changes to CENP‑A chromatin during the cell cycle. 
The timing of the localization of the CENP‑A deposition factors is indicated. At S phase, existing CENP‑A is partitioned 
between the replicated sisters, and gaps are filled with histone H3.3. Although centromere localization of MIS18‑binding 
protein 1 (M18BP1) precedes recruitment of MIS18α and MIS18β116, the precise onset of its localization has not been 
established. By mitosis, M18BP1 localizes to centromeres, followed by MIS18α and MIS18β at mitotic exit. An HJURP 
dimer217 is recruited in early G1 phase to direct new CENP‑A deposition. New CENP‑A is stabilized in late G1 by 
MgcRacGAP (male germ cell Rac GTPase‑activating protein) and RSF1 (remodelling and spacing factor 1). Defining the 
mechanisms that remove these assembly factors once CENP‑A deposition is complete also remains an important open 
question. c | Model for the two‑step regulation of CENP‑A deposition. Cyclin‑dependent kinase (CDK) prevents CENP‑A 
deposition outside G1 phase by inhibiting MIS18 complex localization, MIS18 complex assembly and HJURP recruitment. 
Polo‑like kinase 1 (PLK1) binds to the MIS18 complex to promote CENP‑A deposition at centromeres during G1.
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the occupancy of CENP­A molecules at the centromere 
is half­maximal during mitosis, when the centromere 
recruits the complete kinetochore (FIG. 3b). Determining 
the nature of centromeric chromatin following CENP­A 
dilution in S phase remains an area of active investigation, 
with current models indicating that the gaps left by this 
dilution are filled by H3.3 (REF. 101). In human cells, new 
CENP­A molecules are deposited during the subsequent 
G1 phase79.

The deposition of new CENP­A requires the coordin­
ated activity of several assembly factors (FIG. 3b,c). CENP­A 
has a dedicated histone chaperone, HJURP (Holliday 
junction recognition protein)102,103, which recognizes 
CENP­A as distinct from H3 via specific contacts between 
the CATD and the N­terminal CENP­A­binding domain 
of HJURP104–107. The HJURP CENP­A­binding domain is 
homologous to the yeast CENP­A chaperone Scm3 (sup­
pressor of chromosome mis­segregation 3)108 and is suffi­
cient to direct the incorporation of CENP­A at an ectopic 
locus75. HJURP localizes to centromeres only during G1 
(REFS 102,103), when new CENP­A deposition occurs. 
Consistent with this, HJURP does not participate in the 
partitioning of CENP­A between sister chromatids during 
S phase100.

In addition to HJURP, CENP­A deposition in G1 
requires the three­subunit MIS18 complex, which is 
composed of MIS18α, MIS18β and MIS18­binding pro­
tein 1 (M18BP1 (REF. 109); also known as KNL2 (REF. 110)). 
Intriguingly, not all components of the MIS18 complex are 
conserved across eukaryotes, with a single MIS18 homo­
logue in fungi111 (which have no identified M18BP1), 
and an M18BP1 homologue (KNL­2) but no MIS18α or 
MIS18β homologues in C. elegans110. In Drosophila mela-
nogaster, the functions of the MIS18 complex and HJURP 
seem to be combined in a single molecule, Chromosome 
alignment defect 1 (Cal1)112,113.

M18BP1 has been shown to interact with CENP­C in 
both human cells and Xenopus laevis114,115. As CENP­C 
binds directly to CENP­A nucleosomes as described 
above, this provides a mechanism to ensure that the 
MIS18 complex and HJURP are recruited only to sites of 
pre­existing centromeres to locally direct the incorpora­
tion of new CENP­A. The interaction between M18BP1 
and CENP­C is crucial for the recruitment of the MIS18 
complex during CENP­A assembly in the G1 phase in 
human cells114,116. However, X. laevis M18BP1 is recruited 
via CENP­C during mitosis but not during interphase, 
suggesting that additional M18BP1 recruitment mecha­
nisms exist84,115. CENP­C has also been proposed to con­
tribute to CENP­A deposition beyond MIS18 complex 
recruitment84, including by binding directly to HJURP117. 
Finally, CENP­C91, the RSF (remodelling and spacing 
factor) complex118, and the centralspindlin component 
MgcRacGAP (male germ cell Rac GTPase­activating 
protein)119 have been implicated in the maintenance of 
CENP­A once it is incorporated at centromeres. Together, 
these centromere­specialized assembly factors ensure the 
specific incorporation of CENP­A at centromeres.

Generation of a CENP-A-permissive chromatin environ-
ment. Although CENP­A is an essential component of 
most centromeres, it is not the sole driver of centromere 
specification. CENP­A homologues are absent in some 
organisms, including trypanosomes and some insects 
with holocentric chromosomes120,121, raising the possibil­
ity that alternative strategies for centromere specification 
have arisen during evolution. Even in CENP­A­containing 
organisms, additional molecular features contribute to 
defining an active centromere, including the properties of 
the underlying DNA sequence (see above), the composi­
tion of the surrounding chromatin and post­ translational 
modifications of CENP­A itself (FIG. 4). Moreover, individ­
ual CENP­A nucleosomes are found frequently at non­ 
centromeric sites throughout the chromosomes in human 
cells122, indicating that the presence of CENP­A alone is 
not sufficient for centromere formation.

The core centromere and pericentromere are dis­
tinguished not only by the organization of their DNA 
sequence repeats as described above, but also by distinct 
chromatin signatures that are crucial for their func­
tions. Early studies associated centromeres with hetero­
chromatin123, and subsequent work has found that the 
pericentromere in particular is heterochromatic, con­
taining hypermethylated H3 Lys 9 (H3K9)124,125, although 
non­repetitive centromeres and neocentromeres fre­
quently lack surrounding heterochromatin126,127. In con­
trast to the heterochromatic pericentromere, at the core 
centromere, CENP­A­containing nucleosomes are inter­
spersed with canonical H3­containing nucleosomes with 
transcriptionally permissive marks, particularly dimethyl­
ated H3K4 (H3K4me2)128–130 and H3K36me2 (REF. 40) 
in human and D. melanogaster cells. Recent analyses of 
HAC formation and maintenance have revealed that 
artificially increasing heterochromatin at the α­  satellite 
array is detrimental to CENP­A deposition and centro­
mere function41,131, whereas H3K4me2 and increased 
H3K9 acetylation promote CENP­A maintenance40,41. 

Box 2 | Transmission of the CENP‑A nucleosome during meiosis

In addition to its central role in mediating mitotic divisions, the centromere must also be 
propagated during meiosis to be transmitted to the progeny. Transmission of 
Y chromosome neocentromeres between generations204 demonstrates that the position 
of the human centromere is heritable through the male germ line, independently of the 
underlying DNA sequence. Unlike the majority of canonical histones, centromere protein 
A (CENP‑A) is not exchanged for protamines during sperm development in mammals60, 
Xenopus laevis210 or Drosophila melanogaster211,212, and it can therefore provide a template 
for the centromeres in the progeny. Indeed, in D. melanogaster, maintenance of CENP‑A 
(also known as Cid) in the sperm is required for centromere propagation and for the 
faithful segregation of the paternal chromosomes in the embryo, as sperm chromosomes 
lacking CENP‑A are unable to template a centromere de novo212. By contrast, in 
Caenorhabditis elegans, CENP‑A is not continuously maintained throughout meiosis and 
so does not follow this self‑templating pattern, as sperm do not contribute CENP‑A 
following fertilization; CENP‑A is instead provided by the oocyte, which removes 
CENP‑A during the pachytene stage of prophase I and reloads it in diplotene213.

In those organisms that maintain their centromeres through meiosis, the molecular 
mechanisms that replenish CENP‑A following meiotic S phase are poorly understood. 
Several differences from the mechanisms of CENP‑A replenishment during the mitotic 
cell cycle have been proposed. In D. melanogaster, CENP‑A is assembled during 
prophase I of female meiosis, and during both prophase I and after exit from meiosis II in 
the male211. CENP‑A deposition is similarly biphasic during the meiotic divisions that 
produce male gametes in rye214. The mechanisms that transmit centromere position and 
features through the germ line in vertebrates remain a key unanswered question.
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This indicates that both the presence of transcriptionally 
permissive marks and the absence of heterochromatin  
in the centromere core are important for CENP­A  
localization to centromeres (FIG. 4).

The importance of chromatin marks that are per­
missive for transcription at the core centromere raises 
the possibility that transcription of the centromere and 
pericentromere plays a part in centromere propaga­
tion and function. In fission yeast, transcripts from the  
pericentromeric repeats contribute to the formation 
of pericentromeric heterochromatin, which in turn is 
required for de novo CENP­A deposition on minichro­
mosomes132. In addition, transcripts derived from the cen­
tromere core have been reported in diverse organisms133,134 
(FIG. 4). In human cells, RNA polymerase II (Pol II) and 
several transcription factors localize to mitotic centro­
meres135, and transcripts have been detected from the 
α­satellite sequences of HAC centromeres40. Broadly dis­
rupting Pol II results in kinetochore defects135,136, as well as 
defects in the deposition of new CENP­A nucleo somes137. 
However, tethering strong transcriptional activators to 
the centromere is deleterious to centromere function in 
many organisms131,138, indicating that the transcriptional 
requirement for centromere identity and function must 
be finely tuned.

Chromatin remodellers associated with active tran­
scription have also been implicated in the deposition of 
new CENP­A (FIG. 4), including RSF1, FACT (facilitates 
chromatin transcription), chromodomain helicase DNA­
binding protein 1 (CHD1), and retinoblastoma­ binding 
protein p46 (RBAP46; also known as RBBP7) and 
RBAP48 (also known as RBBP4)103,109,111,118,119,139–141. These 
proteins may facilitate new CENP­A deposition through 
the generation of the necessary transcriptionally permis­
sive centromere core, or they may play a direct part in 
remodelling centromeric chromatin to accommodate its 
oscillations between maximal and half­maximal CENP­A 
occupancy throughout the cell cycle (FIGS 3b,4). For exam­
ple, if H3.3 replaces CENP­A nucleosomes following 
DNA replication, this H3.3 must be exchanged for new 
CENP­A during the following G1. The MIS18 complex 
has also been proposed to contribute to the chromatin 
remodelling in anticipation of new CENP­A deposition, 
including by recruiting factors that regulate DNA methyl­
ation142 and histone acetylation109,111. As a result, tether­
ing a histone acetyltransferase to a HAC centromere can 
partially complement depletion of the MIS18 complex41. 
However, recent work indicates that the MIS18 complex 
also functions directly in the CENP­A­deposition process 
by interacting with the HJURP chaperone143,144.

Regulation of CENP-A deposition. Multiple regulatory 
safeguards have been identified that ensure the faithful 
deposition of new CENP­A­containing nucleosomes 
exclusively at centromeres. In metazoa, CENP­A  
deposition occurs around mitosis or following mitotic 
exit99,115,145–147. This temporal restriction isolates CENP­A 
deposition from the deposition of canonical H3, which 
is coupled to DNA replication in S phase. The cell 
cycle restriction of CENP­A deposition relies heavily 
on phosphorylation downstream of cyclin­dependent 
kinase (CDK)148 (FIG. 3c). Ongoing work indicates that 
CDK negatively regulates CENP­A incorporation at 
numerous steps. In D. melanogaster, the degradation of  
cyclin A has a key role in deposition of CENP­A112,146. In 
human cells, CDKs phosphorylate the MIS18 complex 
subunit M18BP1 to reduce its centromere localization148 
and to prevent recruitment of the MIS18α and MIS18β 
subunits116 outside G1. CDK phosphorylation of HJURP 
disrupts its localization to centromeres149, whereas CDK 
phosphorylation of CENP­A itself on Ser68 has been 
reported to inhibit the CENP­A–HJURP interaction150, 
although the role of Ser68 in CENP­A deposition is 
controversial48,76,84,100,105,107.

In addition to this temporal regulation by CDKs, 
CENP­A deposition requires a licensing step by Polo­
like kinase 1 (PLK1)116 (FIG. 3c). Thus, centromere prop­
agation requires a two­step regulatory paradigm that 
is analogous to the regulation of DNA replication by 
CDK and by DBF4­dependent kinase (DDK)151. PLK1 
binds to and phosphorylates the MIS18 complex to 
promote MIS18 complex localization and to license the 
centromere for CENP­A deposition116. Bypassing both 
the CDK regulation of MIS18 complex assembly and 
PLK1 licensing by constitutively targeting the MIS18α 
subunit to the centromere results in CENP­A deposition 

Figure 4 | Centromeric chromatin. Model of the epigenetic modifications at the core 
centromere, the centromere protein A (CENP‑A) domain and the pericentromere. 
In addition to the sequence and structural specializations that differentiate 
CENP‑A‑containing chromatin from bulk chromatin, post‑translational modifications 
of CENP‑A nucleosomes contribute to centromere function. Human CENP‑A is 
monoubiquitylated at Lys124 (K124ub) within the histone‑fold domain by COPS8 
(CUL4– RBX1– COP9 signalosome complex subunit 8)218 to promote its centromere 
targeting. Acetylation at Lys124 (K124ac) has also been reported219. Moreover, diverse 
other post‑translational modifications of CENP‑A219–221 and histone H4 in the CENP‑A 
nucleosome222 have been described, including methylation (me) and phosphorylation (P). 
Defining the functional contributions of these modifications remains an important 
challenge. CHD1, chromodomain helicase DNA‑binding protein 1; D. melanogaster, 
Drosophila melanogaster; FACT, facilitates chromatin transcription; G. gallus, Gallus 
gallus; H. sapiens, Homo sapiens; O. sativa, Oryza sativa; RBAP, retinoblastoma‑ binding 
protein; RSF1, remodelling and spacing factor 1; S. pombe, Schizosaccharomyces pombe; 
Z. mays, Zea mays.
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throughout the cell cycle and severe mitotic defects116. 
This indicates that the temporal isolation of CENP­A 
deposition is important for centromere function.

Spatial restriction of CENP-A deposition. The regu­
lated deposition of CENP­A nucleosomes ensures the 
epigenetic propagation of the centromere at a persis­
tent location on each chromosome. Many organisms 
also have strategies to prevent CENP­A deposition at 
non­centromeric sites, at which they could make inap­
propriate attachments to the mitotic spindle. In S. cer-
evisiae, mis­targeted CENP­A is removed by the 
combined action of the FACT chromatin remodeller 
and the E3 ubiquitin ligase Psh1 (Pob3/Spt16 histone­ 
associated 1), which targets ectopic CENP­A for deg­
radation152,153. In fission yeast, the proteasome subunit 
Rpt3 (regulatory particle triphosphatase 3) interacts with 
CENP­A and has been implicated in restricting the size 
of the CENP­A domain154. However, a similar proofread­
ing mechanism to remove ectopic CENP­A has not yet 
been identified in vertebrates, consistent with the persis­
tence of CENP­A molecules at non­centromeric sites in 
the genome in human cells122.

CENP­A deposition is also restricted within the cen­
tromere. In humans, mouse and chicken, the CENP­A 
domain occupies only a small portion of the core 
centro mere sequences122,155,156. There is significant vari­
ation in the size of the CENP­A domain among human 
chromosomes (0.4–4.2 Mb for a set of analysed X and 
Y chromosomes157), although an approximately equiv­
alent ratio between the size of the CENP­A domain 
and that of the α­satellite array is maintained157. The 
CENP­A domain of neocentromeres is restricted to an 
even smaller region, with reports of between 40 kb and 
0.5 Mb96,126,127,158. How the CENP­A domain is restricted 
in size in vertebrates remains an area of active investi­
gation. Exogenous CENP­A expression in human cells 
leads to downregulation of the endogenous CENP­A 
protein99, and CENP­A overexpression far beyond this 
level results in mis­localization of CENP­A to chromo­
some arms63,86,159. These data indicate that the restriction 
of the CENP­A domain occurs, at least in part, at the 
level of modulating total protein in the cell, as recently 
proposed in human cells122. In chicken and D. mela-
nogaster, high local concentrations of the CENP­A 
chaperones HJURP or Cal1, respectively, can also drive 
centromere expansion144,160. Intriguingly, these homeo­
stasis mechanisms maintain CENP­A in large excess of 
the amount required for kinetochore function, as cells 
depleted of CENP­A to as little as 10% or even 1% of 
its initial level recruit kinetochore proteins and at least 
partially direct chromosome segregation48,71.

Centromere recognition
The centromere achieves its key function — the segrega­
tion of its corresponding chromosome — by recruiting 
the kinetochore, which is the macromolecular struc­
ture that mediates attachment to the microtubules of 
the mitotic spindle and functions as a signalling hub 
to ensure accurate chromosome segregation161. Thus, 
understanding how centromere form begets function 

hinges crucially on defining the network that connects 
the centromere components to the proteins of the 
kinetochore.

Components of the centromere–kinetochore interface.  
Establishing the architecture of the centromere– 
kinetochore interface has been accelerated by the dis­
covery of several key molecular players over the past 
ten years162–165. The proteins of the centromere–kineto­
chore interface are collectively referred to as the con­
stitutive centromere­associated network (CCAN; also 
known as the interphase centromere complex (ICEN)) 
(FIG. 5). The CCAN is a group of 16 proteins that localize 
to the centromere throughout the cell cycle161. These 
proteins are designated in vertebrates with alpha­
betical CENP­ names (CENP­C, CENP­H, CENP­I, 
CENP­K, CENP­L, CENP­M, CENP­N, CENP­O, 
CENP­P, CENP­Q, CENP­U, CENP­R, CENP­T, 
CENP­W, CENP­S and CENP­X)45,162–170, although 
other CENP­named proteins do not represent constitu­
tive centromere components. Within the CCAN, these 
proteins can be combined into five groups: CENP­C, 
the CENP­L­N complex81,171, the CENP­H­I­K­M com­
plex162,163,172, the CENP­O­P­Q­U­R complex173,174 and 
the CENP­T­W­S­X complex175 (FIG. 5a). Together, these 
proteins recognize centromeric chromatin and connect 
it to the kinetochore.

Dissecting the contributions of the CCAN to centro­
mere recognition presents a particular challenge, owing 
to the differing functional requirements between organ­
isms. Although the CCAN is largely conserved between 
yeast and human176,177, it is dispensable in yeast with the 
exception of the CENP­U homologue Ame1 and the 
CENP­Q homologue Okp1 (REFS 178,179). In mammals, 
CENP­U is essential for early mouse development180, but 
eliminating CENP­U and CENP­Q results in relatively 
mild phenotypes in tissue culture cells174,180. In addition, 
some organisms such as D. melanogaster and C. elegans 
have a minimal CCAN, for which the only identified 
CCAN homologue is CENP­C. In this section, we will 
review the ongoing work to define the precise molecular 
roles of the CCAN in kinetochore assembly and faithful 
chromosome segregation.

Interactions at the CCAN–centromere interface. 
Ongoing work is seeking to establish how the CCAN 
proteins interact with one another and with centro­
meric chromatin to build a robust platform for kineto­
chore assembly on the centromere71,80,81,117,162,172,181–183. 
Within the CCAN, each subcomplex forms numer­
ous direct physical interactions to generate an exten­
sive meshwork183. This network is dynamic, such that 
some subcomplexes rely on different interactions at 
different stages of the cell cycle182–184. CENP­C is a key­
stone molecule in this assembly and is required for the 
recruitment of all other CCAN components during 
mitosis80,117,173,181,183, in addition to its role in promoting 
CENP­A deposition as described above.

The CCAN is anchored to the centromere through its 
interactions with centromeric chromatin. Although each 
of the CCAN proteins can be co­immunoprecipitated with 
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CENP­A nucleosomes, only CENP­C and CENP­N have 
been reported to bind to nucleosomes directly, by recog­
nizing the key structural distinctions between CENP­A 
and H3 (REFS 80–82,91) (FIG. 5a) (see above). In addition, 
several CCAN proteins bind directly to DNA, including 
CENP­C185, CENP­Q173 and the CENP­T­W­S­X com­
plex175, although the contributions of these activities 
to CCAN function remain an area of ongoing inves­
tigation. The CENP­T­W­S­X complex is particularly 
intriguing, as it is composed of histone­fold­contain­
ing proteins175,186 and adopts a structure similar to that 
of canonical nucleosomes (FIG. 5b). In this structure, 
CENP­T­W and CENP­S­X form dimer pairs that can 
be combined into a CENP­T­W­S­X heterotetramer175 
or a (CENP­T­W­S­X)2 octamer187. The CENP­T­W­S­X 
complex wraps DNA, inducing positive supercoils175,187, 
and protects a region of ~100 bp from micrococcal nucle­
ase digestion175, indicating that it may integrate directly 
into centromeric chromatin. The importance of these 
nucleosome­like properties for centromere and kineto­
chore function is still being elucidated, although recent 
work has revealed that the complex requires both these 
DNA contacts and a connection to the rest of the CCAN 
meshwork through the CENP­H­I­K­M complex for its 
centromere localization172,175,183.

Recruitment of the outer kinetochore. Once assembled 
on the centromere, the CCAN provides a platform for 
the assembly of the outer kinetochore. In particular, 
CENP­C and CENP­T form parallel but non­ redundant 
pathways that recruit the key microtubule­binding pro­
teins of the kinetochore, the KNL1–MIS12–NDC80 
(KMN) network159,188–191 (FIG. 5c). Indeed, artificial 
targeting of fragments of CENP­C or CENP­T to an 
ectopic chromosomal locus is sufficient to recruit the 
KMN network and generate a kinetochore­like struc­
ture that can direct chromosome segregation159,192. 
In budding yeast, CENP­U forms a third pathway to 
recruit the KMN network173. In human cells, CENP­I 
has also been reported to interact with the microtu­
bule­binding proteins of the kinetochore193. These pro­
tein interactions are regulated in most eukaryotes, such 
that the CCAN only recruits a full kinetochore during 
mitosis194. Specifically, phosphorylation by Aurora 
B kinase promotes interactions between CENP­C 
and the MIS12 complex during mitosis193,195. In addi­
tion, the NDC80 complex is sequestered outside the 
nucleus throughout interphase and is thereby spatially 
separated from the CCAN until mitosis, when CDK 
phosphorylation promotes its direct interaction with 
CENP­T159,191,194.

Figure 5 | Contributions of the constitutive centromere‑associated network (CCAN) at the centromere–
kinetochore interface. a | The 16 proteins of the CCAN, designated by CENP‑ and a letter, can be grouped into 
subcomplexes as indicated. The subcomplexes are grouped according to functions that have been reported for at least 
one of their subunits. The KMN comprises KNL1, the MIS12 complex and the NDC80 complex, which together bind to 
microtubules. b | Comparison of the crystal structures of the tetramer composed of the histones CENP‑A and H4 in the 
context of the nucleosome (Protein Data Bank (PDB) ID: 3AN2)90 — H2A, H2B and DNA are excluded for clarity — with the 
heterotetramer composed of the histone‑fold‑containing proteins CENP‑T, CENP‑W, CENP‑S and CENP‑X (PDB ID: 
3VH5)175. c | A simplified model of the connectivity from the centromere, to the kinetochore, to the microtubule during 
mitosis. The contributions of CENP‑C and CENP‑T to recruiting the microtubule‑binding interface of the kinetochore are 
highlighted, and the other CCAN components are excluded from this model for clarity.
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Functions of the CCAN. Ultimately, the central 
challenge that remains regarding the centromere– 
kinetochore interface is to use the identified physical 
interactions and functional requirements to define 
fundamental principles for centromere and kineto­
chore function. In addition to their roles in recruiting 
the microtubule­binding interface of the kinetochore, 
CCAN proteins have been proposed to make several 
additional contributions to chromosome segregation 
(FIG. 5a). For example, recent work has suggested that 
the vertebrate CCAN has a key role in resisting the 
forces generated by spindle microtubules130,196, as well 
as controlling metaphase oscillations197 and chromo­
some congression through recruiting the motor protein 
CENP­E198. In addition, several CCAN proteins, includ­
ing CENP­C, CENP­N and CENP­I, have been shown 
to have key roles in the deposition of new CENP­A 
nucleosomes at centromeres66,80,81,114,115,139,192 (FIG. 5a), 
presenting an appealing model for the propagation of 
the centromere via kinetochore proteins. The ongoing 
advances in elucidating the organization of CCAN com­
ponents and subcomplexes will provide further insight 
into the functional contributions of the CCAN.

Conclusions
Research in centromere biology continues to provide 
important insights into the molecular mechanisms 
that underlie the specification, propagation and rec­
ognition of this epigenetically defined chromosomal 
locus. However, many important mysteries remain to 
be solved. For example, continuing to define the con­
tributions of DNA architecture and chromatin marks to 
CENP­A deposition will be crucial for understanding 
why some sites of spurious CENP­A deposition result 
in neocentromere formation, whereas others are main­
tained in the genome inertly. Other key goals for future 
work include establishing the mechanisms by which the 
centromere is disassembled and re­assembled to allow 
passage of the DNA replication fork during S phase, and 
understanding the differences in CENP­A transmission 
during the meiotic cell cycle. Through the development 
of cytological, biochemical and genetic tools, researchers 
are defining Cyril Darlington’s ‘form’ of the centromere 
in increasing molecular detail. Future work faces the 
challenge of further dissecting endogenous centromeres 
and building them de novo to define exactly how the 
form imparts the function.
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